spark LogisticRegressionSummaryExample 源码

  • 2022-10-20
  • 浏览 (223)

spark LogisticRegressionSummaryExample 代码

文件路径:/examples/src/main/scala/org/apache/spark/examples/ml/LogisticRegressionSummaryExample.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

// scalastyle:off println
package org.apache.spark.examples.ml

// $example on$
import org.apache.spark.ml.classification.LogisticRegression
// $example off$
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions.max

object LogisticRegressionSummaryExample {

  def main(args: Array[String]): Unit = {
    val spark = SparkSession
      .builder
      .appName("LogisticRegressionSummaryExample")
      .getOrCreate()
    import spark.implicits._

    // Load training data
    val training = spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt")

    val lr = new LogisticRegression()
      .setMaxIter(10)
      .setRegParam(0.3)
      .setElasticNetParam(0.8)

    // Fit the model
    val lrModel = lr.fit(training)

    // $example on$
    // Extract the summary from the returned LogisticRegressionModel instance trained in the earlier
    // example
    val trainingSummary = lrModel.binarySummary

    // Obtain the objective per iteration.
    val objectiveHistory = trainingSummary.objectiveHistory
    println("objectiveHistory:")
    objectiveHistory.foreach(loss => println(loss))

    // Obtain the receiver-operating characteristic as a dataframe and areaUnderROC.
    val roc = trainingSummary.roc
    roc.show()
    println(s"areaUnderROC: ${trainingSummary.areaUnderROC}")

    // Set the model threshold to maximize F-Measure
    val fMeasure = trainingSummary.fMeasureByThreshold
    val maxFMeasure = fMeasure.select(max("F-Measure")).head().getDouble(0)
    val bestThreshold = fMeasure.where($"F-Measure" === maxFMeasure)
      .select("threshold").head().getDouble(0)
    lrModel.setThreshold(bestThreshold)
    // $example off$

    spark.stop()
  }
}
// scalastyle:on println

相关信息

spark 源码目录

相关文章

spark AFTSurvivalRegressionExample 源码

spark ALSExample 源码

spark BinarizerExample 源码

spark BisectingKMeansExample 源码

spark BucketedRandomProjectionLSHExample 源码

spark BucketizerExample 源码

spark ChiSqSelectorExample 源码

spark ChiSquareTestExample 源码

spark CorrelationExample 源码

spark CountVectorizerExample 源码

0  赞