spark DeveloperApiExample 源码

  • 2022-10-20
  • 浏览 (222)

spark DeveloperApiExample 代码

文件路径:/examples/src/main/scala/org/apache/spark/examples/ml/DeveloperApiExample.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

// scalastyle:off println
package org.apache.spark.examples.ml

import org.apache.spark.ml.classification.{ClassificationModel, Classifier, ClassifierParams}
import org.apache.spark.ml.feature.LabeledPoint
import org.apache.spark.ml.linalg.{BLAS, Vector, Vectors}
import org.apache.spark.ml.param.{IntParam, ParamMap}
import org.apache.spark.ml.util.Identifiable
import org.apache.spark.sql.{Dataset, Row, SparkSession}
import org.apache.spark.sql.functions.col

/**
 * A simple example demonstrating how to write your own learning algorithm using Estimator,
 * Transformer, and other abstractions.
 * This mimics [[org.apache.spark.ml.classification.LogisticRegression]].
 * Run with
 * {{{
 * bin/run-example ml.DeveloperApiExample
 * }}}
 */
object DeveloperApiExample {

  def main(args: Array[String]): Unit = {
    val spark = SparkSession
      .builder
      .appName("DeveloperApiExample")
      .getOrCreate()

    // Prepare training data.
    val training = spark.createDataFrame(Seq(
      LabeledPoint(1.0, Vectors.dense(0.0, 1.1, 0.1)),
      LabeledPoint(0.0, Vectors.dense(2.0, 1.0, -1.0)),
      LabeledPoint(0.0, Vectors.dense(2.0, 1.3, 1.0)),
      LabeledPoint(1.0, Vectors.dense(0.0, 1.2, -0.5))))

    // Create a LogisticRegression instance. This instance is an Estimator.
    val lr = new MyLogisticRegression()
    // Print out the parameters, documentation, and any default values.
    println(s"MyLogisticRegression parameters:\n ${lr.explainParams()}")

    // We may set parameters using setter methods.
    lr.setMaxIter(10)

    // Learn a LogisticRegression model. This uses the parameters stored in lr.
    val model = lr.fit(training.toDF())

    // Prepare test data.
    val test = spark.createDataFrame(Seq(
      LabeledPoint(1.0, Vectors.dense(-1.0, 1.5, 1.3)),
      LabeledPoint(0.0, Vectors.dense(3.0, 2.0, -0.1)),
      LabeledPoint(1.0, Vectors.dense(0.0, 2.2, -1.5))))

    // Make predictions on test data.
    val sumPredictions: Double = model.transform(test)
      .select("features", "label", "prediction")
      .collect()
      .map { case Row(features: Vector, label: Double, prediction: Double) =>
        prediction
      }.sum
    assert(sumPredictions == 0.0,
      "MyLogisticRegression predicted something other than 0, even though all coefficients are 0!")

    spark.stop()
  }
}

/**
 * Example of defining a parameter trait for a user-defined type of [[Classifier]].
 *
 * NOTE: This is private since it is an example. In practice, you may not want it to be private.
 */
private trait MyLogisticRegressionParams extends ClassifierParams {

  /**
   * Param for max number of iterations
   *
   * NOTE: The usual way to add a parameter to a model or algorithm is to include:
   *   - val myParamName: ParamType
   *   - def getMyParamName
   *   - def setMyParamName
   * Here, we have a trait to be mixed in with the Estimator and Model (MyLogisticRegression
   * and MyLogisticRegressionModel). We place the setter (setMaxIter) method in the Estimator
   * class since the maxIter parameter is only used during training (not in the Model).
   */
  val maxIter: IntParam = new IntParam(this, "maxIter", "max number of iterations")
  def getMaxIter: Int = $(maxIter)
}

/**
 * Example of defining a type of [[Classifier]].
 *
 * NOTE: This is private since it is an example. In practice, you may not want it to be private.
 */
private class MyLogisticRegression(override val uid: String)
  extends Classifier[Vector, MyLogisticRegression, MyLogisticRegressionModel]
  with MyLogisticRegressionParams {

  def this() = this(Identifiable.randomUID("myLogReg"))

  setMaxIter(100) // Initialize

  // The parameter setter is in this class since it should return type MyLogisticRegression.
  def setMaxIter(value: Int): this.type = set(maxIter, value)

  // This method is used by fit()
  override protected def train(dataset: Dataset[_]): MyLogisticRegressionModel = {
    // Extract columns from data.
    val oldDataset = dataset.select(col($(labelCol)).cast("double"), col($(featuresCol)))
      .rdd
      .map { case Row(l: Double, f: Vector) => LabeledPoint(l, f) }

    // Do learning to estimate the coefficients vector.
    val numFeatures = oldDataset.take(1)(0).features.size
    val coefficients = Vectors.zeros(numFeatures) // Learning would happen here.

    // Create a model, and return it.
    new MyLogisticRegressionModel(uid, coefficients).setParent(this)
  }

  override def copy(extra: ParamMap): MyLogisticRegression = defaultCopy(extra)
}

/**
 * Example of defining a type of [[ClassificationModel]].
 *
 * NOTE: This is private since it is an example. In practice, you may not want it to be private.
 */
private class MyLogisticRegressionModel(
    override val uid: String,
    val coefficients: Vector)
  extends ClassificationModel[Vector, MyLogisticRegressionModel]
  with MyLogisticRegressionParams {

  // This uses the default implementation of transform(), which reads column "features" and outputs
  // columns "prediction" and "rawPrediction."

  // This uses the default implementation of predict(), which chooses the label corresponding to
  // the maximum value returned by [[predictRaw()]].

  /**
   * Raw prediction for each possible label.
   * The meaning of a "raw" prediction may vary between algorithms, but it intuitively gives
   * a measure of confidence in each possible label (where larger = more confident).
   * This internal method is used to implement [[transform()]] and output [[rawPredictionCol]].
   *
   * @return  vector where element i is the raw prediction for label i.
   *          This raw prediction may be any real number, where a larger value indicates greater
   *          confidence for that label.
   */
  override def predictRaw(features: Vector): Vector = {
    val margin = BLAS.dot(features, coefficients)
    // There are 2 classes (binary classification), so we return a length-2 vector,
    // where index i corresponds to class i (i = 0, 1).
    Vectors.dense(-margin, margin)
  }

  // Number of classes the label can take. 2 indicates binary classification.
  override val numClasses: Int = 2

  // Number of features the model was trained on.
  override val numFeatures: Int = coefficients.size

  /**
   * Create a copy of the model.
   * The copy is shallow, except for the embedded paramMap, which gets a deep copy.
   *
   * This is used for the default implementation of [[transform()]].
   */
  override def copy(extra: ParamMap): MyLogisticRegressionModel = {
    copyValues(new MyLogisticRegressionModel(uid, coefficients), extra).setParent(parent)
  }
}
// scalastyle:on println

相关信息

spark 源码目录

相关文章

spark AFTSurvivalRegressionExample 源码

spark ALSExample 源码

spark BinarizerExample 源码

spark BisectingKMeansExample 源码

spark BucketedRandomProjectionLSHExample 源码

spark BucketizerExample 源码

spark ChiSqSelectorExample 源码

spark ChiSquareTestExample 源码

spark CorrelationExample 源码

spark CountVectorizerExample 源码

0  赞