spark StateStoreRDD 源码

  • 2022-10-20
  • 浏览 (274)

spark StateStoreRDD 代码

文件路径:/sql/core/src/main/scala/org/apache/spark/sql/execution/streaming/state/StateStoreRDD.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.execution.streaming.state

import java.util.UUID

import scala.reflect.ClassTag

import org.apache.spark.{Partition, TaskContext}
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.internal.SessionState
import org.apache.spark.sql.types.StructType
import org.apache.spark.util.SerializableConfiguration

abstract class BaseStateStoreRDD[T: ClassTag, U: ClassTag](
    dataRDD: RDD[T],
    checkpointLocation: String,
    queryRunId: UUID,
    operatorId: Long,
    sessionState: SessionState,
    @transient private val storeCoordinator: Option[StateStoreCoordinatorRef],
    extraOptions: Map[String, String] = Map.empty) extends RDD[U](dataRDD) {

  protected val storeConf = new StateStoreConf(sessionState.conf, extraOptions)

  // A Hadoop Configuration can be about 10 KB, which is pretty big, so broadcast it
  protected val hadoopConfBroadcast = dataRDD.context.broadcast(
    new SerializableConfiguration(sessionState.newHadoopConf()))

  /**
   * Set the preferred location of each partition using the executor that has the related
   * [[StateStoreProvider]] already loaded.
   *
   * Implementations can simply call this method in getPreferredLocations.
   */
  override def getPreferredLocations(partition: Partition): Seq[String] = {
    val stateStoreProviderId = getStateProviderId(partition)
    storeCoordinator.flatMap(_.getLocation(stateStoreProviderId)).toSeq
  }

  protected def getStateProviderId(partition: Partition): StateStoreProviderId = {
    StateStoreProviderId(
      StateStoreId(checkpointLocation, operatorId, partition.index),
      queryRunId)
  }
}

/**
 * An RDD that allows computations to be executed against [[ReadStateStore]]s. It
 * uses the [[StateStoreCoordinator]] to get the locations of loaded state stores
 * and use that as the preferred locations.
 */
class ReadStateStoreRDD[T: ClassTag, U: ClassTag](
    dataRDD: RDD[T],
    storeReadFunction: (ReadStateStore, Iterator[T]) => Iterator[U],
    checkpointLocation: String,
    queryRunId: UUID,
    operatorId: Long,
    storeVersion: Long,
    keySchema: StructType,
    valueSchema: StructType,
    numColsPrefixKey: Int,
    sessionState: SessionState,
    @transient private val storeCoordinator: Option[StateStoreCoordinatorRef],
    extraOptions: Map[String, String] = Map.empty)
  extends BaseStateStoreRDD[T, U](dataRDD, checkpointLocation, queryRunId, operatorId,
    sessionState, storeCoordinator, extraOptions) {

  override protected def getPartitions: Array[Partition] = dataRDD.partitions

  override def compute(partition: Partition, ctxt: TaskContext): Iterator[U] = {
    val storeProviderId = getStateProviderId(partition)

    val store = StateStore.getReadOnly(
      storeProviderId, keySchema, valueSchema, numColsPrefixKey, storeVersion,
      storeConf, hadoopConfBroadcast.value.value)
    val inputIter = dataRDD.iterator(partition, ctxt)
    storeReadFunction(store, inputIter)
  }
}

/**
 * An RDD that allows computations to be executed against [[StateStore]]s. It
 * uses the [[StateStoreCoordinator]] to get the locations of loaded state stores
 * and use that as the preferred locations.
 */
class StateStoreRDD[T: ClassTag, U: ClassTag](
    dataRDD: RDD[T],
    storeUpdateFunction: (StateStore, Iterator[T]) => Iterator[U],
    checkpointLocation: String,
    queryRunId: UUID,
    operatorId: Long,
    storeVersion: Long,
    keySchema: StructType,
    valueSchema: StructType,
    numColsPrefixKey: Int,
    sessionState: SessionState,
    @transient private val storeCoordinator: Option[StateStoreCoordinatorRef],
    extraOptions: Map[String, String] = Map.empty)
  extends BaseStateStoreRDD[T, U](dataRDD, checkpointLocation, queryRunId, operatorId,
    sessionState, storeCoordinator, extraOptions) {

  override protected def getPartitions: Array[Partition] = dataRDD.partitions

  override def compute(partition: Partition, ctxt: TaskContext): Iterator[U] = {
    val storeProviderId = getStateProviderId(partition)

    val store = StateStore.get(
      storeProviderId, keySchema, valueSchema, numColsPrefixKey, storeVersion,
      storeConf, hadoopConfBroadcast.value.value)
    val inputIter = dataRDD.iterator(partition, ctxt)
    storeUpdateFunction(store, inputIter)
  }
}

相关信息

spark 源码目录

相关文章

spark FlatMapGroupsWithStateExecHelper 源码

spark HDFSBackedStateStoreMap 源码

spark HDFSBackedStateStoreProvider 源码

spark RocksDB 源码

spark RocksDBFileManager 源码

spark RocksDBLoader 源码

spark RocksDBStateEncoder 源码

spark RocksDBStateStoreProvider 源码

spark SchemaHelper 源码

spark StateSchemaCompatibilityChecker 源码

0  赞