spark UpdatingSessionsExec 源码

  • 2022-10-20
  • 浏览 (237)

spark UpdatingSessionsExec 代码

文件路径:/sql/core/src/main/scala/org/apache/spark/sql/execution/aggregate/UpdatingSessionsExec.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.execution.aggregate

import org.apache.spark.rdd.RDD
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.expressions.{Ascending, Attribute, SortOrder}
import org.apache.spark.sql.catalyst.plans.physical.{AllTuples, ClusteredDistribution, Distribution, Partitioning}
import org.apache.spark.sql.execution.{SparkPlan, UnaryExecNode}
import org.apache.spark.sql.execution.streaming.StatefulOperatorPartitioning

/**
 * This node updates the session window spec of each input rows via analyzing neighbor rows and
 * determining rows belong to the same session window. The number of input rows remains the same.
 * This node requires sort on input rows by group keys + the start time of session window.
 *
 * There are lots of overhead compared to [[MergingSessionsExec]]. Use [[MergingSessionsExec]]
 * instead whenever possible. Use this node only when we cannot apply both calculations
 * determining session windows and aggregating rows in session window altogether.
 *
 * Refer [[UpdatingSessionsIterator]] for more details.
 */
case class UpdatingSessionsExec(
    isStreaming: Boolean,
    numShufflePartitions: Option[Int],
    groupingExpression: Seq[Attribute],
    sessionExpression: Attribute,
    child: SparkPlan) extends UnaryExecNode {

  private val groupingWithoutSessionExpression = groupingExpression.filterNot {
    p => p.semanticEquals(sessionExpression)
  }
  private val groupingWithoutSessionAttributes =
    groupingWithoutSessionExpression.map(_.toAttribute)

  override protected def doExecute(): RDD[InternalRow] = {
    val inMemoryThreshold = conf.sessionWindowBufferInMemoryThreshold
    val spillThreshold = conf.sessionWindowBufferSpillThreshold

    child.execute().mapPartitions { iter =>
      new UpdatingSessionsIterator(iter, groupingExpression, sessionExpression,
        child.output, inMemoryThreshold, spillThreshold)
    }
  }

  override def output: Seq[Attribute] = child.output

  override def outputPartitioning: Partitioning = child.outputPartitioning

  override def requiredChildDistribution: Seq[Distribution] = {
    if (groupingWithoutSessionExpression.isEmpty) {
      AllTuples :: Nil
    } else {
      if (isStreaming) {
        numShufflePartitions match {
          case Some(parts) =>
            StatefulOperatorPartitioning.getCompatibleDistribution(
              groupingWithoutSessionExpression, parts, conf) :: Nil

          case _ =>
            throw new IllegalStateException("Expected to set the number of partitions before " +
              "constructing required child distribution!")
        }

      } else {
        ClusteredDistribution(groupingWithoutSessionExpression) :: Nil
      }
    }
  }

  override def requiredChildOrdering: Seq[Seq[SortOrder]] = {
    Seq((groupingWithoutSessionAttributes ++ Seq(sessionExpression))
      .map(SortOrder(_, Ascending)))
  }

  override protected def withNewChildInternal(newChild: SparkPlan): UpdatingSessionsExec =
    copy(child = newChild)
}

相关信息

spark 源码目录

相关文章

spark AggUtils 源码

spark AggregateCodegenSupport 源码

spark AggregationIterator 源码

spark BaseAggregateExec 源码

spark HashAggregateExec 源码

spark HashMapGenerator 源码

spark MergingSessionsExec 源码

spark MergingSessionsIterator 源码

spark ObjectAggregationIterator 源码

spark ObjectAggregationMap 源码

0  赞