spark SortBasedAggregationIterator 源码

  • 2022-10-20
  • 浏览 (251)

spark SortBasedAggregationIterator 代码

文件路径:/sql/core/src/main/scala/org/apache/spark/sql/execution/aggregate/SortBasedAggregationIterator.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.execution.aggregate

import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.expressions.aggregate.AggregateExpression
import org.apache.spark.sql.execution.metric.SQLMetric

/**
 * An iterator used to evaluate
 * [[org.apache.spark.sql.catalyst.expressions.aggregate.AggregateFunction]].
 * It assumes the input rows have been sorted by values of [[groupingExpressions]].
 */
class SortBasedAggregationIterator(
    partIndex: Int,
    groupingExpressions: Seq[NamedExpression],
    valueAttributes: Seq[Attribute],
    inputIterator: Iterator[InternalRow],
    aggregateExpressions: Seq[AggregateExpression],
    aggregateAttributes: Seq[Attribute],
    initialInputBufferOffset: Int,
    resultExpressions: Seq[NamedExpression],
    newMutableProjection: (Seq[Expression], Seq[Attribute]) => MutableProjection,
    numOutputRows: SQLMetric)
  extends AggregationIterator(
    partIndex,
    groupingExpressions,
    valueAttributes,
    aggregateExpressions,
    aggregateAttributes,
    initialInputBufferOffset,
    resultExpressions,
    newMutableProjection) {

  /**
   * Creates a new aggregation buffer and initializes buffer values
   * for all aggregate functions.
   */
  private def newBuffer: InternalRow = {
    val bufferSchema = aggregateFunctions.flatMap(_.aggBufferAttributes)
    val bufferRowSize: Int = bufferSchema.length

    val genericMutableBuffer = new GenericInternalRow(bufferRowSize)
    val useUnsafeBuffer = bufferSchema.map(_.dataType).forall(UnsafeRow.isMutable)

    val buffer = if (useUnsafeBuffer) {
      val unsafeProjection =
        UnsafeProjection.create(bufferSchema.map(_.dataType))
      unsafeProjection.apply(genericMutableBuffer)
    } else {
      genericMutableBuffer
    }
    initializeBuffer(buffer)
    buffer
  }

  ///////////////////////////////////////////////////////////////////////////
  // Mutable states for sort based aggregation.
  ///////////////////////////////////////////////////////////////////////////

  // The partition key of the current partition.
  private[this] var currentGroupingKey: UnsafeRow = _

  // The partition key of next partition.
  private[this] var nextGroupingKey: UnsafeRow = _

  // The first row of next partition.
  private[this] var firstRowInNextGroup: InternalRow = _

  // Indicates if we has new group of rows from the sorted input iterator
  private[this] var sortedInputHasNewGroup: Boolean = false

  // The aggregation buffer used by the sort-based aggregation.
  private[this] val sortBasedAggregationBuffer: InternalRow = newBuffer

  protected def initialize(): Unit = {
    if (inputIterator.hasNext) {
      initializeBuffer(sortBasedAggregationBuffer)
      val inputRow = inputIterator.next()
      nextGroupingKey = groupingProjection(inputRow).copy()
      firstRowInNextGroup = inputRow.copy()
      sortedInputHasNewGroup = true
    } else {
      // This inputIter is empty.
      sortedInputHasNewGroup = false
    }
  }

  initialize()

  /** Processes rows in the current group. It will stop when it find a new group. */
  protected def processCurrentSortedGroup(): Unit = {
    currentGroupingKey = nextGroupingKey
    // Now, we will start to find all rows belonging to this group.
    // We create a variable to track if we see the next group.
    var findNextPartition = false
    // firstRowInNextGroup is the first row of this group. We first process it.
    processRow(sortBasedAggregationBuffer, firstRowInNextGroup)

    // The search will stop when we see the next group or there is no
    // input row left in the iter.
    while (!findNextPartition && inputIterator.hasNext) {
      // Get the grouping key.
      val currentRow = inputIterator.next()
      val groupingKey = groupingProjection(currentRow)

      // Check if the current row belongs the current input row.
      if (currentGroupingKey == groupingKey) {
        processRow(sortBasedAggregationBuffer, currentRow)
      } else {
        // We find a new group.
        findNextPartition = true
        nextGroupingKey = groupingKey.copy()
        firstRowInNextGroup = currentRow.copy()
      }
    }
    // We have not seen a new group. It means that there is no new row in the input
    // iter. The current group is the last group of the iter.
    if (!findNextPartition) {
      sortedInputHasNewGroup = false
    }
  }

  ///////////////////////////////////////////////////////////////////////////
  // Iterator's public methods
  ///////////////////////////////////////////////////////////////////////////

  override final def hasNext: Boolean = sortedInputHasNewGroup

  override final def next(): UnsafeRow = {
    if (hasNext) {
      // Process the current group.
      processCurrentSortedGroup()
      // Generate output row for the current group.
      val outputRow = generateOutput(currentGroupingKey, sortBasedAggregationBuffer)
      // Initialize buffer values for the next group.
      initializeBuffer(sortBasedAggregationBuffer)
      numOutputRows += 1
      outputRow
    } else {
      // no more result
      throw new NoSuchElementException
    }
  }

  def outputForEmptyGroupingKeyWithoutInput(): UnsafeRow = {
    initializeBuffer(sortBasedAggregationBuffer)
    generateOutput(UnsafeRow.createFromByteArray(0, 0), sortBasedAggregationBuffer)
  }
}

相关信息

spark 源码目录

相关文章

spark AggUtils 源码

spark AggregateCodegenSupport 源码

spark AggregationIterator 源码

spark BaseAggregateExec 源码

spark HashAggregateExec 源码

spark HashMapGenerator 源码

spark MergingSessionsExec 源码

spark MergingSessionsIterator 源码

spark ObjectAggregationIterator 源码

spark ObjectAggregationMap 源码

0  赞