spark SortAggregateExec 源码

  • 2022-10-20
  • 浏览 (245)

spark SortAggregateExec 代码

文件路径:/sql/core/src/main/scala/org/apache/spark/sql/execution/aggregate/SortAggregateExec.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.execution.aggregate

import org.apache.spark.rdd.RDD
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.expressions.aggregate._
import org.apache.spark.sql.catalyst.expressions.codegen.{CodegenContext, ExprCode}
import org.apache.spark.sql.catalyst.util.truncatedString
import org.apache.spark.sql.execution.{AliasAwareOutputOrdering, SparkPlan}
import org.apache.spark.sql.execution.metric.SQLMetrics
import org.apache.spark.sql.internal.SQLConf

/**
 * Sort-based aggregate operator.
 */
case class SortAggregateExec(
    requiredChildDistributionExpressions: Option[Seq[Expression]],
    isStreaming: Boolean,
    numShufflePartitions: Option[Int],
    groupingExpressions: Seq[NamedExpression],
    aggregateExpressions: Seq[AggregateExpression],
    aggregateAttributes: Seq[Attribute],
    initialInputBufferOffset: Int,
    resultExpressions: Seq[NamedExpression],
    child: SparkPlan)
  extends AggregateCodegenSupport
  with AliasAwareOutputOrdering {

  override lazy val metrics = Map(
    "numOutputRows" -> SQLMetrics.createMetric(sparkContext, "number of output rows"))

  override def requiredChildOrdering: Seq[Seq[SortOrder]] = {
    groupingExpressions.map(SortOrder(_, Ascending)) :: Nil
  }

  override protected def orderingExpressions: Seq[SortOrder] = {
    groupingExpressions.map(SortOrder(_, Ascending))
  }

  protected override def doExecute(): RDD[InternalRow] = {
    val numOutputRows = longMetric("numOutputRows")
    child.execute().mapPartitionsWithIndexInternal { (partIndex, iter) =>
      // Because the constructor of an aggregation iterator will read at least the first row,
      // we need to get the value of iter.hasNext first.
      val hasInput = iter.hasNext
      if (!hasInput && groupingExpressions.nonEmpty) {
        // This is a grouped aggregate and the input iterator is empty,
        // so return an empty iterator.
        Iterator[UnsafeRow]()
      } else {
        val outputIter = new SortBasedAggregationIterator(
          partIndex,
          groupingExpressions,
          inputAttributes,
          iter,
          aggregateExpressions,
          aggregateAttributes,
          initialInputBufferOffset,
          resultExpressions,
          (expressions, inputSchema) =>
            MutableProjection.create(expressions, inputSchema),
          numOutputRows)
        if (!hasInput && groupingExpressions.isEmpty) {
          // There is no input and there is no grouping expressions.
          // We need to output a single row as the output.
          numOutputRows += 1
          Iterator[UnsafeRow](outputIter.outputForEmptyGroupingKeyWithoutInput())
        } else {
          outputIter
        }
      }
    }
  }

  override def supportCodegen: Boolean = {
    // TODO(SPARK-32750): Support sort aggregate code-gen with grouping keys
    super.supportCodegen && conf.getConf(SQLConf.ENABLE_SORT_AGGREGATE_CODEGEN) &&
      groupingExpressions.isEmpty
  }

  protected override def needHashTable: Boolean = false

  protected override def doProduceWithKeys(ctx: CodegenContext): String = {
    throw new UnsupportedOperationException("SortAggregate code-gen does not support grouping keys")
  }

  protected override def doConsumeWithKeys(ctx: CodegenContext, input: Seq[ExprCode]): String = {
    throw new UnsupportedOperationException("SortAggregate code-gen does not support grouping keys")
  }

  override def simpleString(maxFields: Int): String = toString(verbose = false, maxFields)

  override def verboseString(maxFields: Int): String = toString(verbose = true, maxFields)

  private def toString(verbose: Boolean, maxFields: Int): String = {
    val allAggregateExpressions = aggregateExpressions

    val keyString = truncatedString(groupingExpressions, "[", ", ", "]", maxFields)
    val functionString = truncatedString(allAggregateExpressions, "[", ", ", "]", maxFields)
    val outputString = truncatedString(output, "[", ", ", "]", maxFields)
    if (verbose) {
      s"SortAggregate(key=$keyString, functions=$functionString, output=$outputString)"
    } else {
      s"SortAggregate(key=$keyString, functions=$functionString)"
    }
  }

  override protected def withNewChildInternal(newChild: SparkPlan): SortAggregateExec =
    copy(child = newChild)
}

相关信息

spark 源码目录

相关文章

spark AggUtils 源码

spark AggregateCodegenSupport 源码

spark AggregationIterator 源码

spark BaseAggregateExec 源码

spark HashAggregateExec 源码

spark HashMapGenerator 源码

spark MergingSessionsExec 源码

spark MergingSessionsIterator 源码

spark ObjectAggregationIterator 源码

spark ObjectAggregationMap 源码

0  赞