spark ForeachBatchSink 源码
spark ForeachBatchSink 代码
文件路径:/sql/core/src/main/scala/org/apache/spark/sql/execution/streaming/sources/ForeachBatchSink.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.execution.streaming.sources
import org.apache.spark.sql._
import org.apache.spark.sql.catalyst.encoders.ExpressionEncoder
import org.apache.spark.sql.execution.LogicalRDD
import org.apache.spark.sql.execution.streaming.Sink
import org.apache.spark.sql.streaming.DataStreamWriter
class ForeachBatchSink[T](batchWriter: (Dataset[T], Long) => Unit, encoder: ExpressionEncoder[T])
extends Sink {
override def addBatch(batchId: Long, data: DataFrame): Unit = {
val node = LogicalRDD.fromDataset(rdd = data.queryExecution.toRdd, originDataset = data,
isStreaming = false)
implicit val enc = encoder
val ds = Dataset.ofRows(data.sparkSession, node).as[T]
batchWriter(ds, batchId)
}
override def toString(): String = "ForeachBatchSink"
}
/**
* Interface that is meant to be extended by Python classes via Py4J.
* Py4J allows Python classes to implement Java interfaces so that the JVM can call back
* Python objects. In this case, this allows the user-defined Python `foreachBatch` function
* to be called from JVM when the query is active.
* */
trait PythonForeachBatchFunction {
/** Call the Python implementation of this function */
def call(batchDF: DataFrame, batchId: Long): Unit
}
object PythonForeachBatchHelper {
def callForeachBatch(dsw: DataStreamWriter[Row], pythonFunc: PythonForeachBatchFunction): Unit = {
dsw.foreachBatch(pythonFunc.call _)
}
}
相关信息
相关文章
spark ConsoleStreamingWrite 源码
spark ContinuousMemoryStream 源码
spark PackedRowWriterFactory 源码
spark RatePerMicroBatchProvider 源码
spark RatePerMicroBatchStream 源码
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
7、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦