spark ContinuousMemoryStream 源码

  • 2022-10-20
  • 浏览 (251)

spark ContinuousMemoryStream 代码

文件路径:/sql/core/src/main/scala/org/apache/spark/sql/execution/streaming/sources/ContinuousMemoryStream.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.execution.streaming.sources

import java.util.concurrent.atomic.AtomicInteger
import javax.annotation.concurrent.GuardedBy

import scala.collection.mutable.ListBuffer

import org.json4s.NoTypeHints
import org.json4s.jackson.Serialization

import org.apache.spark.{SparkEnv, TaskContext}
import org.apache.spark.rpc.RpcEndpointRef
import org.apache.spark.sql.{Encoder, SQLContext}
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.expressions.UnsafeRow
import org.apache.spark.sql.connector.read.InputPartition
import org.apache.spark.sql.connector.read.streaming.{ContinuousPartitionReader, ContinuousPartitionReaderFactory, ContinuousStream, Offset, PartitionOffset}
import org.apache.spark.sql.execution.streaming.{Offset => _, _}
import org.apache.spark.util.RpcUtils

/**
 * The overall strategy here is:
 *  * ContinuousMemoryStream maintains a list of records for each partition. addData() will
 *    distribute records evenly-ish across partitions.
 *  * RecordEndpoint is set up as an endpoint for executor-side
 *    ContinuousMemoryStreamInputPartitionReader instances to poll. It returns the record at
 *    the specified offset within the list, or null if that offset doesn't yet have a record.
 */
class ContinuousMemoryStream[A : Encoder](id: Int, sqlContext: SQLContext, numPartitions: Int = 2)
  extends MemoryStreamBase[A](sqlContext) with ContinuousStream {

  private implicit val formats = Serialization.formats(NoTypeHints)

  // ContinuousReader implementation

  @GuardedBy("this")
  private val records = Seq.fill(numPartitions)(new ListBuffer[UnsafeRow])

  private val recordEndpoint = new ContinuousRecordEndpoint(records, this)
  @volatile private var endpointRef: RpcEndpointRef = _

  def addData(data: TraversableOnce[A]): Offset = synchronized {
    // Distribute data evenly among partition lists.
    data.toSeq.zipWithIndex.map {
      case (item, index) =>
        records(index % numPartitions) += toRow(item).copy().asInstanceOf[UnsafeRow]
    }

    // The new target offset is the offset where all records in all partitions have been processed.
    ContinuousMemoryStreamOffset((0 until numPartitions).map(i => (i, records(i).size)).toMap)
  }

  override def initialOffset(): Offset = {
    ContinuousMemoryStreamOffset((0 until numPartitions).map(i => (i, 0)).toMap)
  }

  override def deserializeOffset(json: String): ContinuousMemoryStreamOffset = {
    ContinuousMemoryStreamOffset(Serialization.read[Map[Int, Int]](json))
  }

  override def mergeOffsets(offsets: Array[PartitionOffset]): ContinuousMemoryStreamOffset = {
    ContinuousMemoryStreamOffset(
      offsets.map {
        case ContinuousRecordPartitionOffset(part, num) => (part, num)
      }.toMap
    )
  }


  override def planInputPartitions(start: Offset): Array[InputPartition] = {
    val startOffset = start.asInstanceOf[ContinuousMemoryStreamOffset]
    synchronized {
      val endpointName = s"ContinuousMemoryStreamRecordEndpoint-${java.util.UUID.randomUUID()}-$id"
      endpointRef =
        recordEndpoint.rpcEnv.setupEndpoint(endpointName, recordEndpoint)

      startOffset.partitionNums.map {
        case (part, index) => ContinuousMemoryStreamInputPartition(endpointName, part, index)
      }.toArray
    }
  }

  override def createContinuousReaderFactory(): ContinuousPartitionReaderFactory = {
    ContinuousMemoryStreamReaderFactory
  }

  override def stop(): Unit = {
    if (endpointRef != null) recordEndpoint.rpcEnv.stop(endpointRef)
  }

  override def commit(end: Offset): Unit = {}
}

object ContinuousMemoryStream {
  protected val memoryStreamId = new AtomicInteger(0)

  def apply[A : Encoder](implicit sqlContext: SQLContext): ContinuousMemoryStream[A] =
    new ContinuousMemoryStream[A](memoryStreamId.getAndIncrement(), sqlContext)

  def singlePartition[A : Encoder](implicit sqlContext: SQLContext): ContinuousMemoryStream[A] =
    new ContinuousMemoryStream[A](memoryStreamId.getAndIncrement(), sqlContext, 1)
}

/**
 * An input partition for continuous memory stream.
 */
case class ContinuousMemoryStreamInputPartition(
    driverEndpointName: String,
    partition: Int,
    startOffset: Int) extends InputPartition

object ContinuousMemoryStreamReaderFactory extends ContinuousPartitionReaderFactory {
  override def createReader(partition: InputPartition): ContinuousPartitionReader[InternalRow] = {
    val p = partition.asInstanceOf[ContinuousMemoryStreamInputPartition]
    new ContinuousMemoryStreamPartitionReader(p.driverEndpointName, p.partition, p.startOffset)
  }
}

/**
 * An input partition reader for continuous memory stream.
 *
 * Polls the driver endpoint for new records.
 */
class ContinuousMemoryStreamPartitionReader(
    driverEndpointName: String,
    partition: Int,
    startOffset: Int) extends ContinuousPartitionReader[InternalRow] {
  private val endpoint = RpcUtils.makeDriverRef(
    driverEndpointName,
    SparkEnv.get.conf,
    SparkEnv.get.rpcEnv)

  private var currentOffset = startOffset
  private var current: Option[InternalRow] = None

  // Defense-in-depth against failing to propagate the task context. Since it's not inheritable,
  // we have to do a bit of error prone work to get it into every thread used by continuous
  // processing. We hope that some unit test will end up instantiating a continuous memory stream
  // in such cases.
  if (TaskContext.get() == null) {
    throw new IllegalStateException("Task context was not set!")
  }

  override def next(): Boolean = {
    current = getRecord
    while (current.isEmpty) {
      Thread.sleep(10)
      current = getRecord
    }
    currentOffset += 1
    true
  }

  override def get(): InternalRow = current.get

  override def close(): Unit = {}

  override def getOffset: ContinuousRecordPartitionOffset =
    ContinuousRecordPartitionOffset(partition, currentOffset)

  private def getRecord: Option[InternalRow] =
    endpoint.askSync[Option[InternalRow]](
      GetRecord(ContinuousRecordPartitionOffset(partition, currentOffset)))
}

case class ContinuousMemoryStreamOffset(partitionNums: Map[Int, Int])
  extends Offset {
  private implicit val formats = Serialization.formats(NoTypeHints)
  override def json(): String = Serialization.write(partitionNums)
}

相关信息

spark 源码目录

相关文章

spark ConsoleStreamingWrite 源码

spark ForeachBatchSink 源码

spark ForeachWriterTable 源码

spark MicroBatchWrite 源码

spark PackedRowWriterFactory 源码

spark RatePerMicroBatchProvider 源码

spark RatePerMicroBatchStream 源码

spark RateStreamMicroBatchStream 源码

spark RateStreamProvider 源码

spark TextSocketMicroBatchStream 源码

0  赞