spark RatePerMicroBatchProvider 源码

  • 2022-10-20
  • 浏览 (332)

spark RatePerMicroBatchProvider 代码

文件路径:/sql/core/src/main/scala/org/apache/spark/sql/execution/streaming/sources/RatePerMicroBatchProvider.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.execution.streaming.sources

import java.util

import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.connector.catalog.{SupportsRead, Table, TableCapability}
import org.apache.spark.sql.connector.read.{Scan, ScanBuilder}
import org.apache.spark.sql.connector.read.streaming.{ContinuousStream, MicroBatchStream}
import org.apache.spark.sql.internal.connector.SimpleTableProvider
import org.apache.spark.sql.sources.DataSourceRegister
import org.apache.spark.sql.types.{LongType, StructField, StructType, TimestampType}
import org.apache.spark.sql.util.CaseInsensitiveStringMap

/**
 *  A source that generates increment long values with timestamps. Each generated row has two
 *  columns: a timestamp column for the generated time and an auto increment long column starting
 *  with 0L.
 *
 *  This source supports the following options:
 *  - `rowsPerMicroBatch` (e.g. 100): How many rows should be generated per micro-batch.
 *  - `numPartitions` (e.g. 10, default: Spark's default parallelism): The partition number for the
 *    generated rows.
 *  - `startTimestamp` (e.g. 1000, default: 0): starting value of generated time
 *  - `advanceMillisPerMicroBatch` (e.g. 1000, default: 1000): the amount of time being advanced in
 *    generated time on each micro-batch.
 *
 *  Unlike `rate` data source, this data source provides a consistent set of input rows per
 *  micro-batch regardless of query execution (configuration of trigger, query being lagging, etc.),
 *  say, batch 0 will produce 0~999 and batch 1 will produce 1000~1999, and so on. Same applies to
 *  the generated time.
 *
 *  As the name represents, this data source only supports micro-batch read.
 */
class RatePerMicroBatchProvider extends SimpleTableProvider with DataSourceRegister {
  import RatePerMicroBatchProvider._

  override def getTable(options: CaseInsensitiveStringMap): Table = {
    val rowsPerBatch = options.getLong(ROWS_PER_BATCH, 0)
    if (rowsPerBatch <= 0) {
      throw new IllegalArgumentException(
        s"Invalid value '$rowsPerBatch'. The option 'rowsPerBatch' must be positive")
    }

    val numPartitions = options.getInt(
      NUM_PARTITIONS, SparkSession.active.sparkContext.defaultParallelism)
    if (numPartitions <= 0) {
      throw new IllegalArgumentException(
        s"Invalid value '$numPartitions'. The option 'numPartitions' must be positive")
    }

    val startTimestamp = options.getLong(START_TIMESTAMP, 0)
    if (startTimestamp < 0) {
      throw new IllegalArgumentException(
        s"Invalid value '$startTimestamp'. The option 'startTimestamp' must be non-negative")
    }

    val advanceMillisPerBatch = options.getInt(ADVANCE_MILLIS_PER_BATCH, 1000)
    if (advanceMillisPerBatch < 0) {
      throw new IllegalArgumentException(
        s"Invalid value '$advanceMillisPerBatch'. The option 'advanceMillisPerBatch' " +
          "must be non-negative")
    }

    new RatePerMicroBatchTable(rowsPerBatch, numPartitions, startTimestamp,
      advanceMillisPerBatch)
  }

  override def shortName(): String = "rate-micro-batch"
}

class RatePerMicroBatchTable(
    rowsPerBatch: Long,
    numPartitions: Int,
    startTimestamp: Long,
    advanceMillisPerBatch: Int) extends Table with SupportsRead {
  override def name(): String = {
    s"RatePerMicroBatch(rowsPerBatch=$rowsPerBatch, numPartitions=$numPartitions," +
      s"startTimestamp=$startTimestamp, advanceMillisPerBatch=$advanceMillisPerBatch)"
  }

  override def schema(): StructType = RatePerMicroBatchProvider.SCHEMA

  override def capabilities(): util.Set[TableCapability] = {
    util.EnumSet.of(TableCapability.MICRO_BATCH_READ)
  }

  override def newScanBuilder(options: CaseInsensitiveStringMap): ScanBuilder = () => new Scan {
    override def readSchema(): StructType = RatePerMicroBatchProvider.SCHEMA

    override def toMicroBatchStream(checkpointLocation: String): MicroBatchStream =
      new RatePerMicroBatchStream(rowsPerBatch, numPartitions, startTimestamp,
        advanceMillisPerBatch, options)

    override def toContinuousStream(checkpointLocation: String): ContinuousStream = {
      throw new UnsupportedOperationException("continuous mode is not supported!")
    }
  }
}

object RatePerMicroBatchProvider {
  val SCHEMA =
    StructType(StructField("timestamp", TimestampType) :: StructField("value", LongType) :: Nil)

  val VERSION = 1

  val NUM_PARTITIONS = "numPartitions"
  val ROWS_PER_BATCH = "rowsPerBatch"
  val START_TIMESTAMP = "startTimestamp"
  val ADVANCE_MILLIS_PER_BATCH = "advanceMillisPerBatch"
}

相关信息

spark 源码目录

相关文章

spark ConsoleStreamingWrite 源码

spark ContinuousMemoryStream 源码

spark ForeachBatchSink 源码

spark ForeachWriterTable 源码

spark MicroBatchWrite 源码

spark PackedRowWriterFactory 源码

spark RatePerMicroBatchStream 源码

spark RateStreamMicroBatchStream 源码

spark RateStreamProvider 源码

spark TextSocketMicroBatchStream 源码

0  赞