spark RatePerMicroBatchStream 源码

  • 2022-10-20
  • 浏览 (301)

spark RatePerMicroBatchStream 代码

文件路径:/sql/core/src/main/scala/org/apache/spark/sql/execution/streaming/sources/RatePerMicroBatchStream.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.execution.streaming.sources

import org.json4s.NoTypeHints
import org.json4s.jackson.Serialization

import org.apache.spark.internal.Logging
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.util.DateTimeUtils
import org.apache.spark.sql.connector.read.{InputPartition, PartitionReader, PartitionReaderFactory}
import org.apache.spark.sql.connector.read.streaming.{MicroBatchStream, Offset, ReadLimit, SupportsTriggerAvailableNow}
import org.apache.spark.sql.util.CaseInsensitiveStringMap

class RatePerMicroBatchStream(
    rowsPerBatch: Long,
    numPartitions: Int,
    startTimestamp: Long,
    advanceMsPerBatch: Int,
    options: CaseInsensitiveStringMap)
  extends SupportsTriggerAvailableNow with MicroBatchStream with Logging {

  override def initialOffset(): Offset = RatePerMicroBatchStreamOffset(0L, startTimestamp)

  override def latestOffset(): Offset = {
    throw new UnsupportedOperationException(
      "latestOffset(Offset, ReadLimit) should be called instead of this method")
  }

  override def getDefaultReadLimit: ReadLimit = {
    ReadLimit.maxRows(rowsPerBatch)
  }

  private def extractOffsetAndTimestamp(offset: Offset): (Long, Long) = {
    offset match {
      case o: RatePerMicroBatchStreamOffset => (o.offset, o.timestamp)
      case _ => throw new IllegalStateException("The type of Offset should be " +
        "RatePerMicroBatchStreamOffset")
    }
  }

  private var isTriggerAvailableNow: Boolean = false
  private var offsetForTriggerAvailableNow: Offset = _

  override def prepareForTriggerAvailableNow(): Unit = {
    isTriggerAvailableNow = true
  }

  override def latestOffset(startOffset: Offset, limit: ReadLimit): Offset = {
    def calculateNextOffset(start: Offset): Offset = {
      val (startOffsetLong, timestampAtStartOffset) = extractOffsetAndTimestamp(start)
      // NOTE: This means the data source will provide a set of inputs for "single" batch if
      // the trigger is Trigger.Once.
      val numRows = rowsPerBatch

      val endOffsetLong = Math.min(startOffsetLong + numRows, Long.MaxValue)
      val endOffset = RatePerMicroBatchStreamOffset(endOffsetLong,
        timestampAtStartOffset + advanceMsPerBatch)

      endOffset
    }

    if (isTriggerAvailableNow) {
      if (offsetForTriggerAvailableNow == null) {
        offsetForTriggerAvailableNow = calculateNextOffset(startOffset)
      }

      offsetForTriggerAvailableNow
    } else {
      calculateNextOffset(startOffset)
    }
  }

  override def deserializeOffset(json: String): Offset = {
    RatePerMicroBatchStreamOffset.apply(json)
  }

  override def planInputPartitions(start: Offset, end: Offset): Array[InputPartition] = {
    val (startOffset, startTimestamp) = extractOffsetAndTimestamp(start)
    val (endOffset, endTimestamp) = extractOffsetAndTimestamp(end)

    assert(startOffset <= endOffset, s"startOffset($startOffset) > endOffset($endOffset)")
    assert(startTimestamp <= endTimestamp,
      s"startTimestamp($startTimestamp) > endTimestamp($endTimestamp)")
    logDebug(s"startOffset: $startOffset, startTimestamp: $startTimestamp, " +
      s"endOffset: $endOffset, endTimestamp: $endTimestamp")

    if (startOffset == endOffset) {
      Array.empty
    } else {
      (0 until numPartitions).map { p =>
        RatePerMicroBatchStreamInputPartition(p, numPartitions, startOffset,
          startTimestamp, endOffset, endTimestamp)
      }.toArray
    }
  }

  override def createReaderFactory(): PartitionReaderFactory = {
    RatePerMicroBatchStreamReaderFactory
  }

  override def commit(end: Offset): Unit = {}

  override def stop(): Unit = {}

  override def toString: String = s"RatePerMicroBatchStream[rowsPerBatch=$rowsPerBatch, " +
    s"numPartitions=$numPartitions, startTimestamp=$startTimestamp, " +
    s"advanceMsPerBatch=$advanceMsPerBatch]"
}

case class RatePerMicroBatchStreamOffset(offset: Long, timestamp: Long) extends Offset {
  override def json(): String = {
    Serialization.write(this)(RatePerMicroBatchStreamOffset.formats)
  }
}

object RatePerMicroBatchStreamOffset {
  implicit val formats = Serialization.formats(NoTypeHints)

  def apply(json: String): RatePerMicroBatchStreamOffset =
    Serialization.read[RatePerMicroBatchStreamOffset](json)
}

case class RatePerMicroBatchStreamInputPartition(
    partitionId: Int,
    numPartitions: Int,
    startOffset: Long,
    startTimestamp: Long,
    endOffset: Long,
    endTimestamp: Long) extends InputPartition

object RatePerMicroBatchStreamReaderFactory extends PartitionReaderFactory {
  override def createReader(partition: InputPartition): PartitionReader[InternalRow] = {
    val p = partition.asInstanceOf[RatePerMicroBatchStreamInputPartition]
    new RatePerMicroBatchStreamPartitionReader(p.partitionId, p.numPartitions,
      p.startOffset, p.startTimestamp, p.endOffset)
  }
}

class RatePerMicroBatchStreamPartitionReader(
    partitionId: Int,
    numPartitions: Int,
    startOffset: Long,
    startTimestamp: Long,
    endOffset: Long) extends PartitionReader[InternalRow] {
  private var count: Long = 0

  override def next(): Boolean = {
    startOffset + partitionId + numPartitions * count < endOffset
  }

  override def get(): InternalRow = {
    val currValue = startOffset + partitionId + numPartitions * count
    count += 1

    InternalRow(DateTimeUtils.millisToMicros(startTimestamp), currValue)
  }

  override def close(): Unit = {}
}

相关信息

spark 源码目录

相关文章

spark ConsoleStreamingWrite 源码

spark ContinuousMemoryStream 源码

spark ForeachBatchSink 源码

spark ForeachWriterTable 源码

spark MicroBatchWrite 源码

spark PackedRowWriterFactory 源码

spark RatePerMicroBatchProvider 源码

spark RateStreamMicroBatchStream 源码

spark RateStreamProvider 源码

spark TextSocketMicroBatchStream 源码

0  赞