spark RateStreamProvider 源码

  • 2022-10-20
  • 浏览 (258)

spark RateStreamProvider 代码

文件路径:/sql/core/src/main/scala/org/apache/spark/sql/execution/streaming/sources/RateStreamProvider.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.execution.streaming.sources

import java.util

import org.apache.spark.network.util.JavaUtils
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.connector.catalog.{SupportsRead, Table, TableCapability}
import org.apache.spark.sql.connector.read.{Scan, ScanBuilder}
import org.apache.spark.sql.connector.read.streaming.{ContinuousStream, MicroBatchStream}
import org.apache.spark.sql.execution.streaming.continuous.RateStreamContinuousStream
import org.apache.spark.sql.internal.connector.SimpleTableProvider
import org.apache.spark.sql.sources.DataSourceRegister
import org.apache.spark.sql.types._
import org.apache.spark.sql.util.CaseInsensitiveStringMap

/**
 *  A source that generates increment long values with timestamps. Each generated row has two
 *  columns: a timestamp column for the generated time and an auto increment long column starting
 *  with 0L.
 *
 *  This source supports the following options:
 *  - `rowsPerSecond` (e.g. 100, default: 1): How many rows should be generated per second.
 *  - `rampUpTime` (e.g. 5s, default: 0s): How long to ramp up before the generating speed
 *    becomes `rowsPerSecond`. Using finer granularities than seconds will be truncated to integer
 *    seconds.
 *  - `numPartitions` (e.g. 10, default: Spark's default parallelism): The partition number for the
 *    generated rows. The source will try its best to reach `rowsPerSecond`, but the query may
 *    be resource constrained, and `numPartitions` can be tweaked to help reach the desired speed.
 */
class RateStreamProvider extends SimpleTableProvider with DataSourceRegister {
  import RateStreamProvider._

  override def getTable(options: CaseInsensitiveStringMap): Table = {
    val rowsPerSecond = options.getLong(ROWS_PER_SECOND, 1)
    if (rowsPerSecond <= 0) {
      throw new IllegalArgumentException(
        s"Invalid value '$rowsPerSecond'. The option 'rowsPerSecond' must be positive")
    }

    val rampUpTimeSeconds = Option(options.get(RAMP_UP_TIME))
      .map(JavaUtils.timeStringAsSec)
      .getOrElse(0L)
    if (rampUpTimeSeconds < 0) {
      throw new IllegalArgumentException(
        s"Invalid value '$rampUpTimeSeconds'. The option 'rampUpTime' must not be negative")
    }

    val numPartitions = options.getInt(
      NUM_PARTITIONS, SparkSession.active.sparkContext.defaultParallelism)
    if (numPartitions <= 0) {
      throw new IllegalArgumentException(
        s"Invalid value '$numPartitions'. The option 'numPartitions' must be positive")
    }
    new RateStreamTable(rowsPerSecond, rampUpTimeSeconds, numPartitions)
  }

  override def shortName(): String = "rate"
}

class RateStreamTable(
    rowsPerSecond: Long,
    rampUpTimeSeconds: Long,
    numPartitions: Int)
  extends Table with SupportsRead {

  override def name(): String = {
    s"RateStream(rowsPerSecond=$rowsPerSecond, rampUpTimeSeconds=$rampUpTimeSeconds, " +
      s"numPartitions=$numPartitions)"
  }

  override def schema(): StructType = RateStreamProvider.SCHEMA

  override def capabilities(): util.Set[TableCapability] = {
    util.EnumSet.of(TableCapability.MICRO_BATCH_READ, TableCapability.CONTINUOUS_READ)
  }

  override def newScanBuilder(options: CaseInsensitiveStringMap): ScanBuilder = () => new Scan {
    override def readSchema(): StructType = RateStreamProvider.SCHEMA

    override def toMicroBatchStream(checkpointLocation: String): MicroBatchStream =
      new RateStreamMicroBatchStream(
        rowsPerSecond, rampUpTimeSeconds, numPartitions, options, checkpointLocation)

    override def toContinuousStream(checkpointLocation: String): ContinuousStream =
      new RateStreamContinuousStream(rowsPerSecond, numPartitions)
  }
}

object RateStreamProvider {
  val SCHEMA =
    StructType(StructField("timestamp", TimestampType) :: StructField("value", LongType) :: Nil)

  val VERSION = 1

  val NUM_PARTITIONS = "numPartitions"
  val ROWS_PER_SECOND = "rowsPerSecond"
  val RAMP_UP_TIME = "rampUpTime"

  /** Calculate the end value we will emit at the time `seconds`. */
  def valueAtSecond(seconds: Long, rowsPerSecond: Long, rampUpTimeSeconds: Long): Long = {
    // E.g., rampUpTimeSeconds = 4, rowsPerSecond = 10
    // Then speedDeltaPerSecond = 2
    //
    // seconds   = 0 1 2  3  4  5  6
    // speed     = 0 2 4  6  8 10 10 (speedDeltaPerSecond * seconds)
    // end value = 0 2 6 12 20 30 40 (0 + speedDeltaPerSecond * seconds) * (seconds + 1) / 2
    val speedDeltaPerSecond = rowsPerSecond / (rampUpTimeSeconds + 1)
    if (seconds <= rampUpTimeSeconds) {
      // Calculate "(0 + speedDeltaPerSecond * seconds) * (seconds + 1) / 2" in a special way to
      // avoid overflow
      if (seconds % 2 == 1) {
        (seconds + 1) / 2 * speedDeltaPerSecond * seconds
      } else {
        seconds / 2 * speedDeltaPerSecond * (seconds + 1)
      }
    } else {
      // rampUpPart is just a special case of the above formula: rampUpTimeSeconds == seconds
      val rampUpPart = valueAtSecond(rampUpTimeSeconds, rowsPerSecond, rampUpTimeSeconds)
      rampUpPart + (seconds - rampUpTimeSeconds) * rowsPerSecond
    }
  }
}

相关信息

spark 源码目录

相关文章

spark ConsoleStreamingWrite 源码

spark ContinuousMemoryStream 源码

spark ForeachBatchSink 源码

spark ForeachWriterTable 源码

spark MicroBatchWrite 源码

spark PackedRowWriterFactory 源码

spark RatePerMicroBatchProvider 源码

spark RatePerMicroBatchStream 源码

spark RateStreamMicroBatchStream 源码

spark TextSocketMicroBatchStream 源码

0  赞