spark memory 源码

  • 2022-10-20
  • 浏览 (256)

spark memory 代码

文件路径:/sql/core/src/main/scala/org/apache/spark/sql/execution/streaming/sources/memory.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.execution.streaming.sources

import java.util
import javax.annotation.concurrent.GuardedBy

import scala.collection.mutable
import scala.collection.mutable.ArrayBuffer
import scala.util.control.NonFatal

import org.apache.spark.internal.Logging
import org.apache.spark.sql.Row
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.encoders.RowEncoder
import org.apache.spark.sql.catalyst.expressions.Attribute
import org.apache.spark.sql.catalyst.plans.logical.{LeafNode, Statistics}
import org.apache.spark.sql.catalyst.plans.logical.statsEstimation.EstimationUtils
import org.apache.spark.sql.connector.catalog.{SupportsWrite, Table, TableCapability}
import org.apache.spark.sql.connector.write.{DataWriter, DataWriterFactory, LogicalWriteInfo, PhysicalWriteInfo, SupportsTruncate, Write, WriteBuilder, WriterCommitMessage}
import org.apache.spark.sql.connector.write.streaming.{StreamingDataWriterFactory, StreamingWrite}
import org.apache.spark.sql.internal.connector.SupportsStreamingUpdateAsAppend
import org.apache.spark.sql.types.StructType

/**
 * A sink that stores the results in memory. This [[org.apache.spark.sql.execution.streaming.Sink]]
 * is primarily intended for use in unit tests and does not provide durability.
 */
class MemorySink extends Table with SupportsWrite with Logging {

  override def name(): String = "MemorySink"

  override def schema(): StructType = StructType(Nil)

  override def capabilities(): util.Set[TableCapability] = {
    util.EnumSet.of(TableCapability.STREAMING_WRITE)
  }

  override def newWriteBuilder(info: LogicalWriteInfo): WriteBuilder = {
    new WriteBuilder with SupportsTruncate with SupportsStreamingUpdateAsAppend {
      private var needTruncate: Boolean = false
      private val inputSchema: StructType = info.schema()

      override def truncate(): WriteBuilder = {
        this.needTruncate = true
        this
      }

      override def build(): Write = {
        new MemoryWrite(MemorySink.this, inputSchema, needTruncate)
      }
    }
  }

  private case class AddedData(batchId: Long, data: Array[Row])

  /** An order list of batches that have been written to this [[Sink]]. */
  @GuardedBy("this")
  private val batches = new ArrayBuffer[AddedData]()

  /** Returns all rows that are stored in this [[Sink]]. */
  def allData: Seq[Row] = synchronized {
    batches.flatMap(_.data).toSeq
  }

  def latestBatchId: Option[Long] = synchronized {
    batches.lastOption.map(_.batchId)
  }

  def latestBatchData: Seq[Row] = synchronized {
    batches.lastOption.toSeq.flatten(_.data)
  }

  def dataSinceBatch(sinceBatchId: Long): Seq[Row] = synchronized {
    batches.filter(_.batchId > sinceBatchId).flatMap(_.data).toSeq
  }

  def toDebugString: String = synchronized {
    batches.map { case AddedData(batchId, data) =>
      val dataStr = try data.mkString(" ") catch {
        case NonFatal(e) => "[Error converting to string]"
      }
      s"$batchId: $dataStr"
    }.mkString("\n")
  }

  def write(batchId: Long, needTruncate: Boolean, newRows: Array[Row]): Unit = {
    val notCommitted = synchronized {
      latestBatchId.isEmpty || batchId > latestBatchId.get
    }
    if (notCommitted) {
      logDebug(s"Committing batch $batchId to $this")
      val rows = AddedData(batchId, newRows)
      if (needTruncate) {
        synchronized {
          batches.clear()
          batches += rows
        }
      } else {
        synchronized { batches += rows }
      }
    } else {
      logDebug(s"Skipping already committed batch: $batchId")
    }
  }

  def clear(): Unit = synchronized {
    batches.clear()
  }

  override def toString(): String = "MemorySink"
}

case class MemoryWriterCommitMessage(partition: Int, data: Seq[Row])
  extends WriterCommitMessage {}

class MemoryWrite(sink: MemorySink, schema: StructType, needTruncate: Boolean) extends Write {
  override def toStreaming: StreamingWrite = {
    new MemoryStreamingWrite(sink, schema, needTruncate)
  }
}

class MemoryStreamingWrite(
    val sink: MemorySink, schema: StructType, needTruncate: Boolean)
  extends StreamingWrite {

  override def createStreamingWriterFactory(info: PhysicalWriteInfo): MemoryWriterFactory = {
    MemoryWriterFactory(schema)
  }

  override def commit(epochId: Long, messages: Array[WriterCommitMessage]): Unit = {
    val newRows = messages.flatMap {
      case message: MemoryWriterCommitMessage => message.data
    }
    sink.write(epochId, needTruncate, newRows)
  }

  override def abort(epochId: Long, messages: Array[WriterCommitMessage]): Unit = {
    // Don't accept any of the new input.
  }
}

case class MemoryWriterFactory(schema: StructType)
  extends DataWriterFactory with StreamingDataWriterFactory {

  override def createWriter(
      partitionId: Int,
      taskId: Long): DataWriter[InternalRow] = {
    new MemoryDataWriter(partitionId, schema)
  }

  override def createWriter(
      partitionId: Int,
      taskId: Long,
      epochId: Long): DataWriter[InternalRow] = {
    createWriter(partitionId, taskId)
  }
}

class MemoryDataWriter(partition: Int, schema: StructType)
  extends DataWriter[InternalRow] with Logging {

  private val data = mutable.Buffer[Row]()

  private val fromRow = RowEncoder(schema).resolveAndBind().createDeserializer()

  override def write(row: InternalRow): Unit = {
    data.append(fromRow(row))
  }

  override def commit(): MemoryWriterCommitMessage = {
    val msg = MemoryWriterCommitMessage(partition, data.clone().toSeq)
    data.clear()
    msg
  }

  override def abort(): Unit = {}

  override def close(): Unit = {}
}


/**
 * Used to query the data that has been written into a [[MemorySink]].
 */
case class MemoryPlan(sink: MemorySink, override val output: Seq[Attribute]) extends LeafNode {
  private val sizePerRow = EstimationUtils.getSizePerRow(output)

  override def computeStats(): Statistics = Statistics(sizePerRow * sink.allData.size)
}

相关信息

spark 源码目录

相关文章

spark ConsoleStreamingWrite 源码

spark ContinuousMemoryStream 源码

spark ForeachBatchSink 源码

spark ForeachWriterTable 源码

spark MicroBatchWrite 源码

spark PackedRowWriterFactory 源码

spark RatePerMicroBatchProvider 源码

spark RatePerMicroBatchStream 源码

spark RateStreamMicroBatchStream 源码

spark RateStreamProvider 源码

0  赞